

Σι-μα Ιητηρ(ιατρός) Μινωϊκή Κρήτη

10 ΠΟΛΥΘΕΜΑΤΙΚΟ ΣΥΝΕΔΡΙΟ ΙΑΤΡΙΚΟΥ ΣΥΛΛΟΓΟΥ ΗΡΑΚΛΕΙΟΥ

Ξενοδοχείο Aquila Atlantis 03,04 & 05.11.2023

Λοιμώξεις αναπνευστικού σε ασθενείς με χρόνιες πνευμονοπάθειες

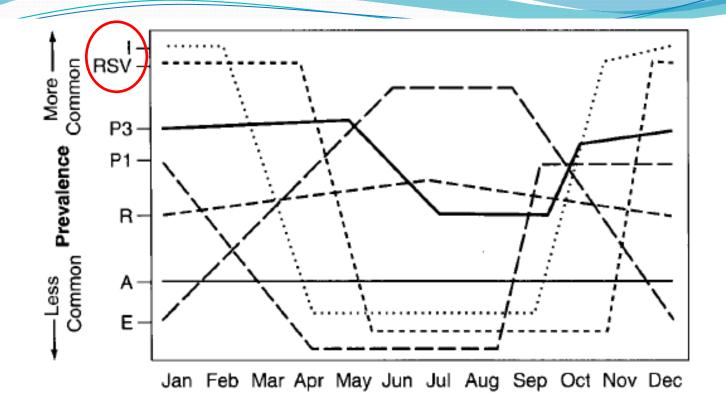
Πιτσιδιανάκης Γ. (Πνευμονολόγος-Φυματιολόγος Πνευμονολογική κλινική ΠΑΓΝΗ

Λοιμώξεις ανώτερου αναπνευστικού

- Κοινό κρυολόγημα
- Φαρυγγοαμυγδαλίτιδα
- Οξεία Ρινοκολπίτιδα
- Οξεία επιγλωττίτιδα
- Λαρυγγίτιδα
- Οξεία μέση πυώδης ωτίτιδα

Λοιμώξεις κατώτερου αναπνευστικού

- Βρογχίτιδα
- Βρογχιολίτιδα
- Πνευμονία


Λοιμώξεις ανώτερου αναπνευστικού

Most upper respiratory infections are of viral etiology.

- *Epiglottitis and laryngotracheitis* are exceptions with severe cases likely caused by *Haemophilus influenzae* type b.
- Bacterial pharyngitis is often caused by Streptococcus pyogenes

Virus	Estimated frequency (%)
Rhinoviruses	30-50
Coronaviruses	10-15
Influenza virus	5-10
RSV	5
Parainfluenza	5
Adenoviruses	<5
Enteroviruses	<5
Bacteria	Unknown
Unknown	20-25

Heikkinen T, Jarvinen A. The common cold. Lancet 2003;361:51.

Figure 1. Seasonal prevalence of common cold viruses. I = influenza; RSV = respiratory syncytial virus; P3 = parainfluenza type 3; P1 = parainfluenza type 1; R = rhinovirus; A = adenovirus; E = enterovirus.

Kirkpatrick GL. The common cold. Prim Care 1996;23:657.

- 200 viruses are related to the common cold
- Viruses with a seasonal incidence (influenza and parainfluenza) have a more systemic symptomatology.
- Adenoviruses and enteroviruses produce a spectrum of illnesses that overlap with the common cold, with more characteristic findings than pharyngitis and lower respiratory infections.

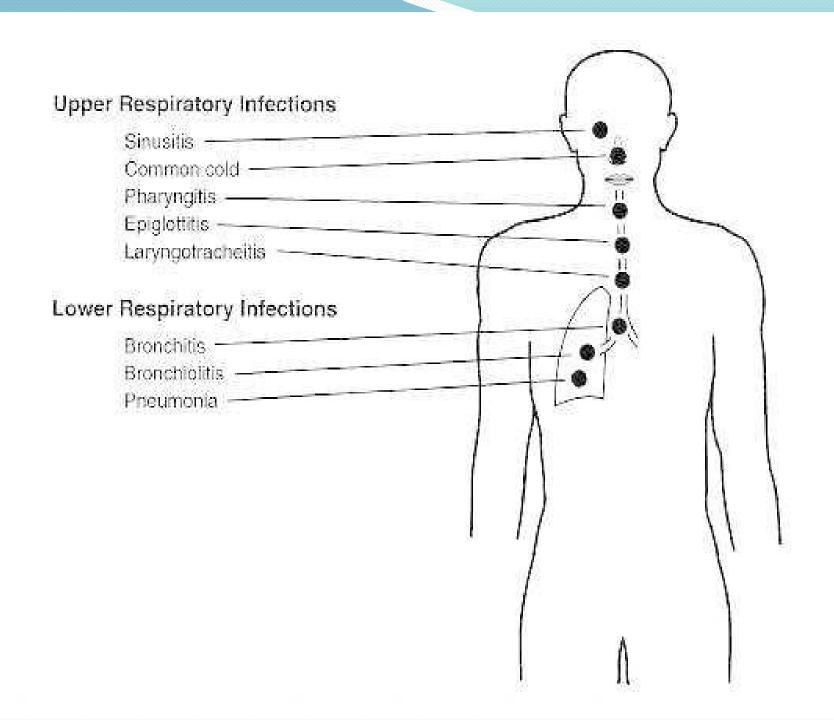
Transmission is easy from human to human.

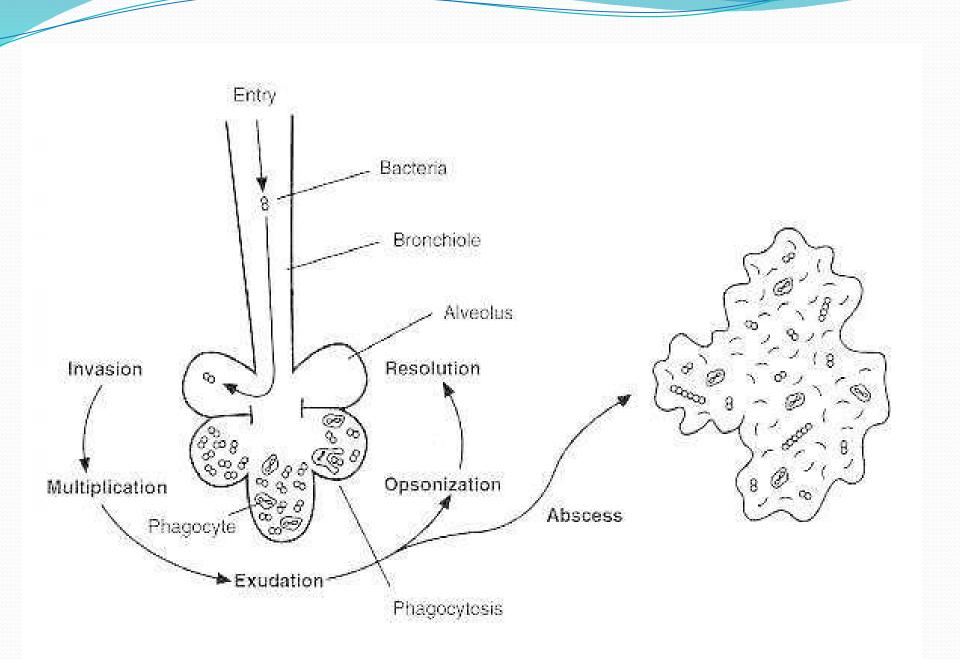
The incubation period varies is usually between 1 and 3 days

Infectiousness is highest during days 2-3 of the symptoms.

Turner RB. Epidemiology, pathogenesis and treatment of the common cold. Ann Allergy Asthma Immunol 1997;78:531

Συμπτώματα	Κοινό κρυολόγημα	Γρίπη	
Πυρετός	Σπάνια στους ενήλικες και στα μεγαλύτερα παιδιά. Μπορεί όμως να είναι υψηλός (έως και 39° C) στα βρέφη και τα μικρά παιδιά.	Συνήθως υψηλός πυρετός, από 38,5°C μέχρι και 40°C, που συνήθως διαρκεί 3-4 ημέρες.	
Πονοκέφαλος	Σπάνια υπάρχει	Απότομη έναρξη. Μπορεί να είναι έντονος	
Μυϊκοί πόνοι	Μέτριας βαρύτητας	Συνήθως έντονοι	
Αίσθημα κόπωσης	Μἑτριας βαρὑτητας	Συχνά έντονο. Μπορεί να διαρκέσει δύο ή και περισσότερες εβδομάδες	
Έντονη εξάντληση	Όχι	Αιφνίδια έναρξη. Μπορεί να είναι πολύ έντονη	
Καταρροή	Συχνά	Μερικές φορές	
Φτάρνισμα	Συχνά	Μερικές φορές	
Πονόλαιμος	Συχνά	Μερικές φορές	
Βήχας Βήχας		Συνήθως ἑντονος <mark>β</mark> ήχας	




Which Patients With Suspected or Confirmed Influenza Should Be Treated With Antivirals?

- 18. Clinicians should start antiviral treatment as soon as possible for adults and children with documented or suspected influenza, irrespective of influenza vaccination history, who meet the following criteria:
 - Persons of any age who are hospitalized with influenza, regardless of illness duration prior to hospitalization (*A-II*).
 - Outpatients of any age with severe or progressive illness, regardless of illness duration (*A-III*).
 - Outpatients who are at high risk of complications from influenza, including those with chronic medical conditions and immunocompromised patients (*A-II*).
 - Children younger than 2 years and adults ≥ 65 years (*A-III*).
 - Pregnant women and those within 2 weeks postpartum (*A-III*).

Λοιμώξεις κατώτερου αναπνευστικού

- Causative agents of lower respiratory infections are viral or bacterial.
- Viruses cause most cases of bronchitis and bronchiolitis.
- In community-acquired pneumonias, the most common bacterial agent is Streptococcus pneumoniae.
- Atypical pneumonias are cause by such agents as Mycoplasma pneumoniae, Chlamydia spp, Legionella, Coxiella burnetti and viruses.
- Nosocomial pneumonias and pneumonias in immunosuppressed patients have protean etiology with gram-negative organisms and staphylococci as predominant organisms.

Clinical Illness	Bacteria	Viruses	Fungi	Other
Common cold (rhinilis, coryza)	Rare	Rhinoviruses Coronavirus Parainfluenza viruses Adenoviruses Respiratory syncytial virus Influenza viruses	Bare	Pare
Pharyngilis and tonsillitis (tonsillopharyngilis)	Group A β-hemolytic streptococci Corynebacterium diphtheriae Nelsseria gonorrhoeae Mycoplasma pneumoniae Mycoplasma hominis (type 1) Mixed anaerobes	Adenoviruses Coxsackieviruses A Influenza viruses Rhinovirus, coronavirus Parainfluenza viruses Epstein-Barr virus, cytomegalovirus Herpes simplex virus	Candida albicans	Rare
Epiglottitis and laryngotracheitis (croup) Bronchitis and	Haemophilus influenzae type b Corynebacterium diphtheriae Haemophilus influenzae	Respiratory syncytial virus Parainfluenza viruses Parainfluenza viruses	Rare Rare	Rare Rare
bronchiolitis	Streptococcus pneumoniae Mycoplasma pneumoniae	Respiratory syncytial virus Adenoviruses Herpes simplex virus		
Pneumonia	Streptococcus pneumoniae Staphylococcus aureus Streptococcus pyogenes Haemophilus influenzae Klebsiella pneumoniae Escherichia coli Pseudomonas aeruginosa Mycoplasma pneumoniae Legionella spp Anaerobic bacteria Mycobacterium tuberculosis and other Mycoplasma spp Coxiella burnetii Chlamydia psittaci Chlamydia psittaci	Adenoviruses Parainfluenza viruses Respiratory syncytial virus Influenza viruses Varicella-zoster virus Measles virus Oytomegalovirus Herpes simplex virus Hantavirus (Muerte Carryon)	Histoplasma cepsulatum Blastomyces dermitidis Páracoccidioides brasiliensis Coccidioides immitis Candida albicans Filobasidiella (Cryptococcus) neoformans Aspergillus dumigatus and other Aspergillus app	Pneumooystis carini

TABLE 93-1 Common Agents of Respiratory Infections

Baron S, editor. Medical Microbiology. 4th edition. Galveston (TX):

 Table 1. 2007 Infectious Diseases Society of America/American Thoracic Society

 Criteria for Defining Severe Community-acquired Pneumonia

	Intensive Care Med (2023) 49:615-632	
Valid	https://doi.org/10.1007/s00134-023-07033-8	ıinor
criter		
Mi	GUIDELINES	
I I	ERS/ESICM/ESCMID/ALAT guidelines for the	
1	management of severe community-acquired	
(pneumonia	
T I] F	Ignacio Martin-Loeches ^{1,2,3,4*} , Antoni Torres ^{3,4} , Blin Nagavci ⁵ , Stefano Aliberti ^{6,7} , Massimo Antonelli ⁸ , Matteo Bassetti ⁹ , Lieuwe D. Bos ¹⁰ , James D. Chalmers ¹¹ , Lennie Derde ¹² , Jan de Waele ¹³ , Jose Garnacho-Montero ¹⁴ , Marin Kollef ¹⁵ , Carlos M. Luna ¹⁶ , Rosario Menendez ¹⁷ , Michael S. Niederman ¹⁷ , Dmitry Ponomarev ^{18,19} , Marcos I. Restrepo ²⁰ , David Rigau ²¹ , Marcus J. Schultz ^{10,22,23} , Emmanuel Weiss ²⁴ , Tobias Welte ²⁵ and Richard Wunderink ²⁶	
I.	2023 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply, corrected publication 2023	
Ma	jor criteria	
S	eptic shock with need for vasopressors	

Respiratory failure requiring mechanical ventilation

*Due to infection alone (i.e., not chemotherapy induced).

 Table 1. 2007 Infectious Diseases Society of America/American Thoracic Society

 Criteria for Defining Severe Community-acquired Pneumonia

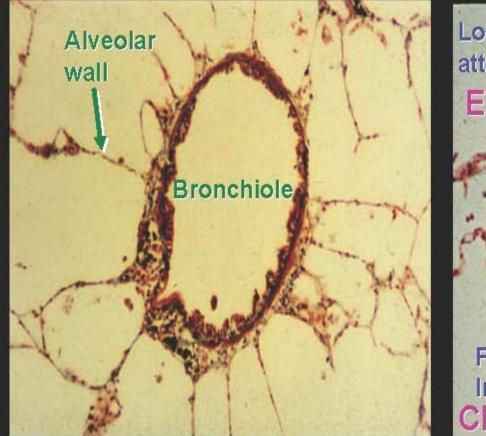
Validated definition includes either one major criterion or three or more minor criteria

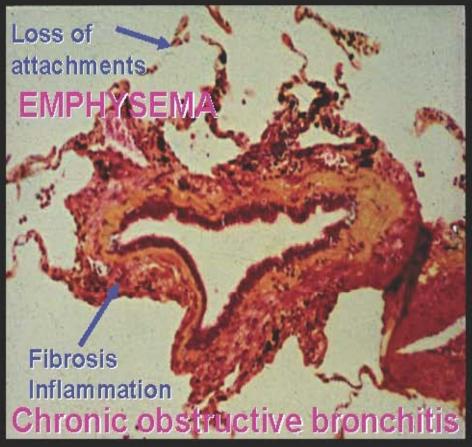
Minor criteria	
Respiratory rate \geq 30 breaths/min	
Pa_{O2}/Fi_{O2} ratio ≤ 250	
Multilobar infiltrates	
Confusion/disorientation	
Uremia (blood urea nitrogen level \geq 20 mg/dl)	
Leukopenia [*] (white blood cell count < 4,000 cells/µl)	
Thrombocytopenia (platelet count < 100,000/µl)	
Hypothermia (core temperature < 36°C)	
Hypotension requiring aggressive fluid resuscitation	
Major criteria	
Septic shock with need for vasopressors	
Respiratory failure requiring mechanical ventilation	
*Due to infection alone (i.e., not chemotherapy induced).	

Table 3. Initial Treatment Strategies for Outpatients with Community-acquired Pneumonia

	Standard Regimen	
No comorbidities or risk factors for MRSA or	Amoxicillin or	
Pseudomonas aeruginosa <u>*</u>	doxycycline or	
	macrolide (if local pneumococcal	
	resistance is <25%)	
With comorbidities [‡]	Combination therapy with	
	amoxicillin/clavulanate or cephalosporin	
	AND	
	macrolide or doxycycline [§]	
	OR	
	monotherapy with respiratorv	
	fluoroquinolone SATS	

 Table 4. Initial Treatment Strategies for Inpatients with Community-acquired Pneumonia by Level of Severity and Risk for Drug Resistance


	Standard Regimen	Prior Respiratory Isolation of MRSA	Prior Respiratory Isolation of <i>Pseudomonas</i> aeruginosa	Recent Hospitalization and Parenteral Antibiotics and Locally Validated Risk Factors for MRSA	Recent Hospitalization and Parenteral Antibiotics and Locally Validated Risk Factors for <i>P.</i> <i>aeruginosa</i>
Nonsevere inpatient pneumonia*	β Lactam + macrolide [†] or respiratory fluroquinolone [‡]	Add MRSA coverage [§] and obtain cultures/nasal PCR to allow deescalation or confirmation of need for continued therapy		withhold MRSA coverage unless culture results are	Obtain cultures but initiate coverage for <i>P.</i> <i>aeruginosa</i> only if culture results are positive
Severe inpatient pneumonia*	8-Lactam + macrolide [†] or 8-lactam + fluroquinolone [‡]	obtain cultures/nasal PCR to allow deescalation or	obtain cultures to allow deescalation or	Add MRSA coverage [§] and obtain nasal PCR and cultures to allow deescalation or confirmation of need for continued	Add coverage for <i>P. aeruginosa</i> and obtain cultures to allow deescalation or confirmation of need for conti


COPD DEFINITION

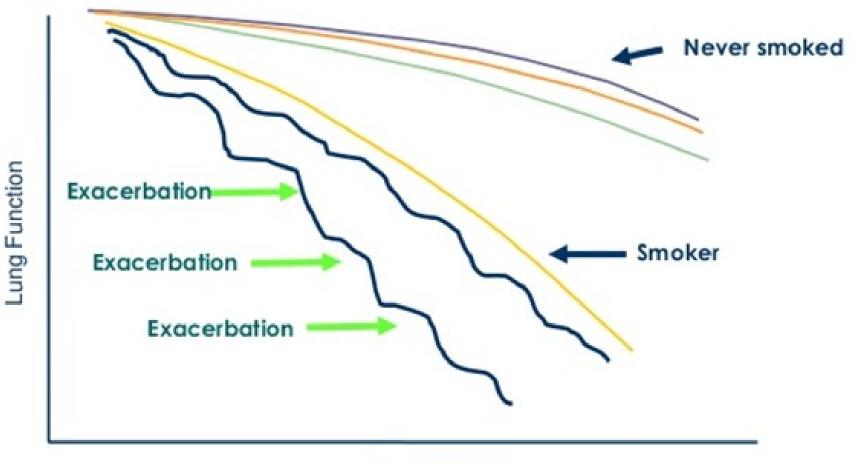
 "heterogeneous lung condition characterized by chronic respiratory symptoms (dyspnea, cough, expectoration, exacerbations) due to abnormalities of the airways (bronchitis, bronchiolitis) and/or alveoli (emphysema) that cause persistent, often progressive, airflow obstruction"

Peripheral lung

Normal

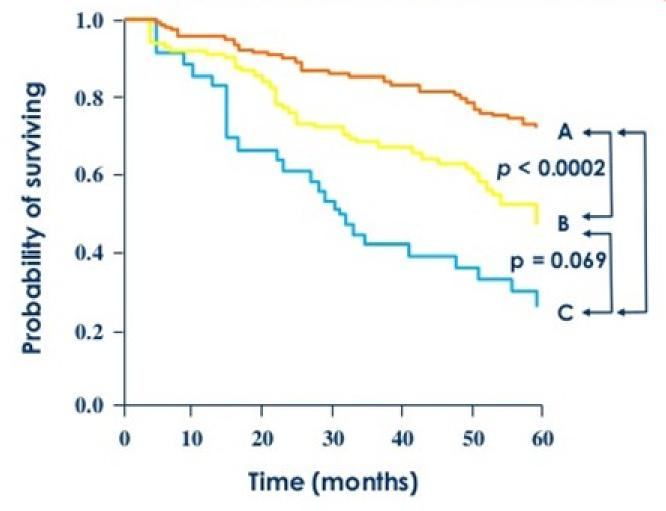
Dr Manuel Cosio

Εικόνα 12.11. Τύπος Ι (pink puffer).


ΧΡΟΝΙΑ ΒΡΟΓΧΙΤΙΔΑ ΚΑΙ ΕΜΦΥΣΗΜΑ 1101

1102 ΧΡΟΝΙΑ ΒΡΟΓΧΙΤΙΔΑ ΚΑΙ ΕΜΦΥΣΗΜΑ

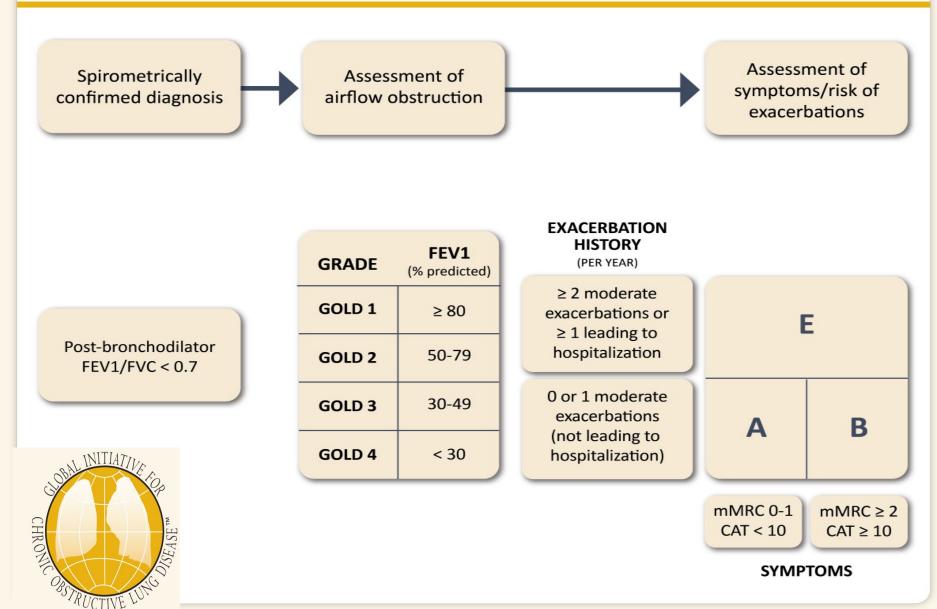
Εικόνα 12.12. Τύπος ΙΙ (blue bloater).


Frequent Exacerbations Lead to Declining Lung Function

Time (Years)

Fletcher C. Br Med J. 1977

Frequent exacerbations are associated with increased mortality



A = No exacerbations B = 1-2 exacerbations C = 3 or more exacerbations

Soler-Cataluna JJ, et al. Thorax 2005;60:925-931

GOLD ABE Assessment Tool

Figure 2.3

2022 2022 Clobal Initiative for Chronic Obstructive Lung Disease

COPD exacerbation

- GOLD 2023 has adopted the recent consensus Rome proposal), which defines ECOPD as:
- "an event characterized by dyspnea and/or cough and sputum that worsen over<14 days, which may be accompanied bytachypnea and/or tachycardia and is often associated with increased local and systemic inflammation <u>caused</u> by airway infection, pollution, or other insult to the ai

Exacerbation of COPD

Κατευθυντήριες Οδηγίες

για τη Διάγνωση και τη Θεραπεία των Λοιμώξεων

AOHNA 2015

2ⁿ έκδοση

Πίνακας 1. Λοιμώδεις παράγοντες που προκαλούν παρόξυνση ΧΑΠ.

Λοιμώδεις παράγοντες Παθογόνος μικροοργανισμός Influenza A kai B lol (30%-50%) Parainfluenza 1, 2 kai 3 Rhinovirus Coronavirus Adenovirus Respiratory Syncytial Virus (RSV) Chlamydophila pneumoniae Άτυπα (ενδοκυττάρια) παθογόνα Mycoplasma pneumoniae (5%-10%) Haemophilus influenzae (στελέχη που δεν τυποποιούνται) Βακτήρια (40%-50%) Haemophilus parainfluenzae Streptococcus pneumoniae Moraxella catarrhalis Pseudomonas aeruginosa Εντεροβακτηριακά (Klebsiella pneumoniae)

PERSPECTIVE

Infection as a comorbidity of COPD

TABLE 1 Bacterial pathogens implicated in acute and chronic infections in chronic obstructive pulmonary disease				
Microbe	Role in exacerbations	Role in stable disease		
Bacteria				
Haemophilus influenzae	20-30% of exacerbations	Major pathogen		
Streptococcus pneumoniae	10-15% of exacerbations	Minor role		
Moraxella catarrhalis	10-15% of exacerbations	Minor role		
Pseudomonas aeruginosa	5-10% of exacerbations, prevalent in advanced disease	Likely important in advanced disease		
Enterobacteriaceae	Isolated in advanced disease, pathogenic significance undefined	Undefined		
Haemophilus haemolyticus	Isolated frequently, unlikely cause	Unlikely		
Haemophilus parainfluenzae	Isolated frequently, unlikely cause	Unlikely		
Staphylococcus aureus	Isolated infrequently, unlikely cause	Unlikely		
Atypical bacteria				
Chlamydophila pneumoniae	3-5% of exacerbations	Commonly detected, pathogenic significance undefined		
Mycoplasma pneumoniae	1-2% of exacerbations	Unlikely		

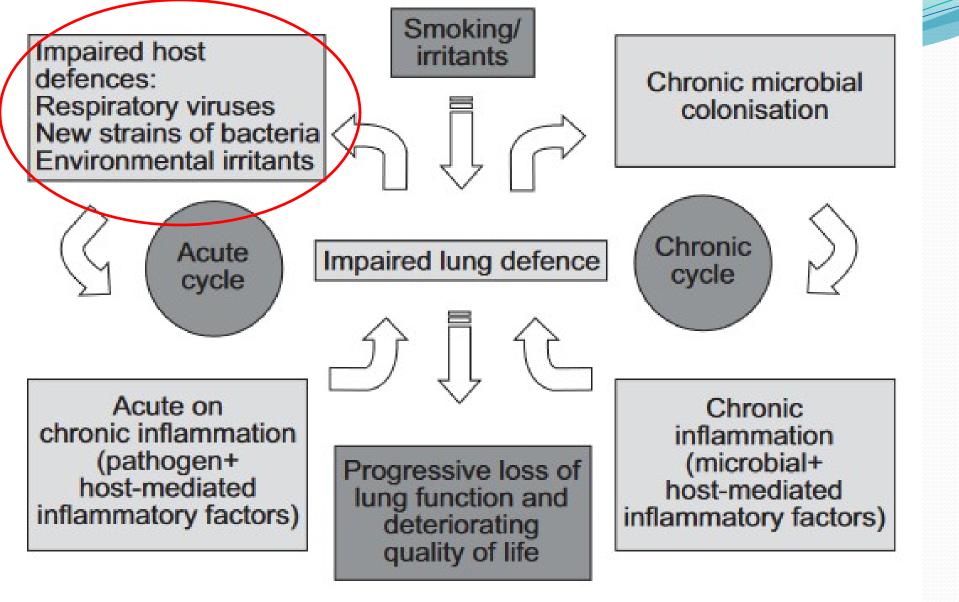


FIGURE 1. Two distinct infection cycles in chronic obstructive pulmonary disease.

PERSPECTIVE

Infection as a comorbidity of COPD

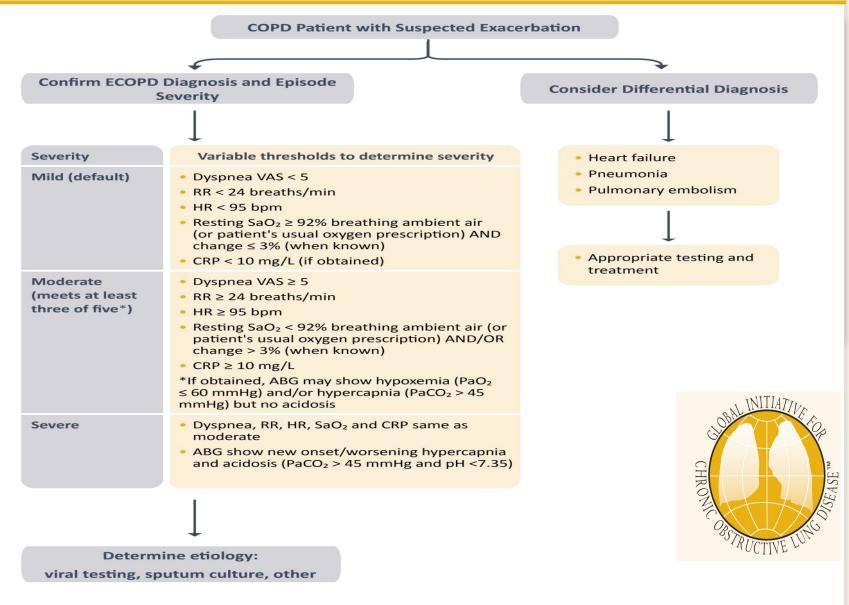
COMMUNITY-ACQUIRED PNEUMONIA IN COPD

- <u>A major cause of hospitalisation and a common</u> <u>cause of death</u>, community-acquired pneumonia (CAP) is most commonly seen <u>in individuals who</u> <u>smoke cigarettes and/or have COPD</u>.
- the pneumococcus still remains predominant, an increased incidence of H. influenzae and occasionally M. catarrhalis is seen.
- <u>The presence of very severe COPD with concomitant</u>
 <u>bronchiectasis</u> and repeated courses of antibiotics
 predisposes these patients to pneumonia caused by P.
 <u>aeruginosa</u>

ANTIBIOTICS AND ECOPD

- Antibiotics should be given to patients with ECOPD who have increased sputum volume and sputum purulence and most of those requiring mechanical ventilation
- The recommended length of antibiotic therapy is 5-7 days
- The choice of antibiotic empirical treatment is an aminopenicillin with clavulanic acid, macrolide, tetracycline, or, in selected patients, quinolone.
- In patients with frequent exacerbations, severe airflow obstruction and/or exacerbations requiring mechanical ventilation, cultures from sputum or other materials from the lung should be performed, as gram-negativebacteria (e.g.,Pseudomonas species) or resistant pathogens that are not sensitive to the above-mentioned antibiotics may be

present.



COPD exacerbation and Corticosteroids

- **Systemic corticoids** in COPD exacerbations improve lung function, oxygenation, and risk of early relapse, and reduce treatment failures and length of hospitalization
- A dose of 40 mg prednisone-equivalent per day for 5 days is recommended . Longer courses increase the risk of pneumonia and mortality
- **Therapy with oral prednisolone** is equally effective to intravenous administration
- Nebulized budesonide may be a suitable alternative to systemic corticosteroids in some patients
- <u>Recent studies suggest that glucocorticoids may be less</u> <u>efficacious to treat COPD exacerbations in patients with</u> <u>lower blood eosinophil levels</u>

Classification of the Severity of COPD Exacerbations

Figure 5.1

Adapted from: The ROME Proposal, Celli et al. (2021) Am J Respir Crit Care Med. 204(11): 1251-8. Abbreviations: VAS visual analog dyspnea scale; RR respiratory rate; HR heart rate; SaO₂ oxygen saturation; CRP C-reactive protein; ABG arterial blood gases; PaO₂ Arterial pressure of oxygen.

© 2022, 2022 Clobal Initiative for Chronic Obstructive Lung Disease

Management of Severe but not Life-threatening Exacerbations*

- Assess severity of symptoms, blood gases, chest radiograph
- Administer supplemental oxygen therapy, obtain serial arterial blood gas, venous blood gas and pulse oximetry measurements
- Bronchodilators:
 - Increase doses and/or frequency of short-acting bronchodilators
 - Combine short-acting beta₂-agonists and anticholinergics
 - Consider use of long-acting bronchodilators when patient becomes stable
 - Use spacers or air-driven nebulizers when appropriate
- Consider oral corticosteroids
- Consider antibiotics (oral) when signs of bacterial infection are present
- Consider noninvasive mechanical ventilation (NIV)
- At all times:
 - Monitor fluid balance
 - Consider subcutaneous heparin or low molecular weight heparin for thromboembolism prophylaxis
 - Identify and treat associated conditions (e.g., heart failure, arrhythmias, pulmonary embolism etc.)

*Local resources need to be considered

Potential Indications for Hospitalization Assessment*

- Severe symptoms such as sudden worsening of resting dyspnea, high respiratory rate, decreased oxygen saturation, confusion, drowsiness
- Acute respiratory failure
- Onset of new physical signs (e.g., cyanosis, peripheral edema)
- Failure of an exacerbation to respond to initial medical management
- Presence of serious comorbidities (e.g., heart failure, newly occurring arrhythmias, etc.)
- Insufficient home support

*Local resources need to be considered

Table 5.3

2 2022 2022 Clobal Initiative for Chronic Obstructive Lung Disease

Key Points for the Management of Stable COPD During **COVID-19** Pandemic

Table 7.1

Protective Strategies	 Follow basic infection control measures Wear a face covering Consider shielding/sheltering-in-place Have the COVID-19 vaccinations in line with national recommendations
Investigations	 Only essential spirometry at times of high prevalence of COVID-19
Pharmacotherapy	 Ensure adequate supplies of medications Continue unchanged including ICS
Non-pharmacological Therapy	 Ensure annual influenza vaccination Maintain physical activity

Vaccines in copd

- Vaccination against influenza can reduce serious illness and death in COPD by ~50%. Vaccines containing cold or live inactivated viruses are recommended, as they are more effective in elderly patients with COPD.
- **Pneumococcal polysaccharide vaccine** is recommended for COPD patients 65 years and older.
- This vaccine has been shown to reduce the incidence of communityacquired pneumonia in COPD patients younger than age 65 with an FEV1 < 40% predicted.
- Vaccination against COVID-19

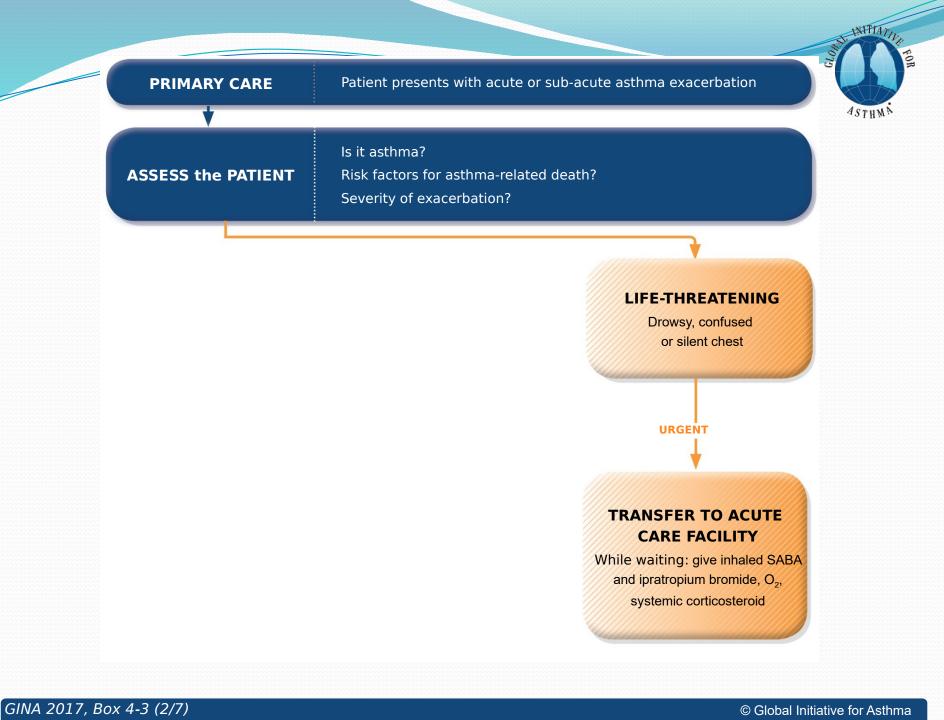
- Asthma is a heterogeneous disease, usually characterized by chronic airway inflammation.
- It is defined by the history of respiratory symptoms, such as wheeze, shortness of breath, chest tightness and cough, that vary over time and in intensity, together with variable expiratory airflow limitation

ASTHMA AND INFECTIONS


- Respiratory viruses were detected in 34% of the asthma patients experiencing an acute exacerbation.
- The patients infected with these viruses had more prominent and persistent cough symptoms,

Original Article

2016


Impact of viral infection on acute exacerbation of asthma in out-patient clinics: a prospective study

Hua Liao¹, Zifeng Yang², Chunguang Yang², Yan Tang², Shengming Liu¹, Wenda Guan², Rongchang Chen²

Action plan: Is it understood? Was it used appropriately? Does it need modification?

ASTHMA

PRIMARY CARE

Patient presents with acute or sub-acute asthma exacerbation

ASSESS the PATIENT

Is it asthma? Risk factors for asthma-related death? Severity of exacerbation?

MILD or MODERATE

Talks in phrases, prefers sitting to lying, not agitated Respiratory rate increased Accessory muscles not used Pulse rate 100–120 bpm O_2 saturation (on air) 90–95% PEF >50% predicted or best

SEVERE

Talks in words, sits hunched forwards, agitated Respiratory rate >30/min Accessory muscles in use Pulse rate >120 bpm O_2 saturation (on air) <90% PEF \leq 50% predicted or best LIFE-THREATENING

Drowsy, confused or silent chest

TRANSFER TO ACUTE CARE FACILITY

URGENT

While waiting: give inhaled SABA and ipratropium bromide, O₂, systemic corticosteroid

ASTHWA

PRIMARY CARE

Is it asthma?

ASSESS the PATIENT

Risk factors for asthma-related death? Severity of exacerbation?

Patient presents with acute or sub-acute asthma exacerbation

MILD or MODERATE

Talks in phrases, prefers sitting to lying, not agitated Respiratory rate increased Accessory muscles not used Pulse rate 100–120 bpm O_2 saturation (on air) 90–95% PEF >50% predicted or best

SEVERE

Talks in words, sits hunched forwards, agitated Respiratory rate >30/min Accessory muscles in use Pulse rate >120 bpm O_2 saturation (on air) <90% PEF \leq 50% predicted or best LIFE-THREATENING

Drowsy, confused or silent chest

START TREATMENT

SABA 4–10 puffs by pMDI + spacer, repeat every 20 minutes for 1 hour

Prednisolone: adults 1 mg/kg, max. 50 mg, children 1–2 mg/kg, max. 40 mg **Controlled oxygen** (if available): target saturation 93–95% (children: 94-98%) WORSENING -

TRANSFER TO ACUTE CARE FACILITY

URGENT

While waiting: give inhaled SABA and ipratropium bromide, O₂, systemic corticosteroid

START TREATMENT

SABA 4–10 puffs by pMDI + spacer, repeat every 20 minutes for 1 hour

Prednisolone: adults 1 mg/kg, max. 50 mg, children 1–2 mg/kg, max. 40 mg

Controlled oxygen (if available): target saturation 93–95% (children: 94-98%)

WORSENING

TRANSFER TO ACUTE CARE FACILITY

While waiting: give inhaled SABA and ipratropium bromide, O₂, systemic corticosteroid

WORSENING

CONTINUE TREATMENT with SABA as needed **ASSESS RESPONSE AT 1 HOUR** (or earlier)

IMPROVING

START TREATMENT

SABA 4–10 puffs by pMDI + spacer, repeat every 20 minutes for 1 hour

Prednisolone: adults 1 mg/kg, max. 50 mg, children 1–2 mg/kg, max. 40 mg

Controlled oxygen (if available): target saturation 93–95% (children: 94-98%)

WORSENING

TRANSFER TO ACUTE CARE FACILITY

While waiting: give inhaled SABA and ipratropium bromide, O₂, systemic corticosteroid

CONTINUE TREATMENT with SABA as needed **ASSESS RESPONSE AT 1 HOUR** (or earlier)

IMPROVING

ASSESS FOR DISCHARGE

Symptoms improved, not needing SABA PEF improving, and >60-80% of personal best or predicted Oxygen saturation >94% room air

Resources at home adequate

ARRANGE at **DISCHARGE**

Reliever: continue as needed **Controller:** start, or step up. Check inhaler technique, adherence

WORSENING

Prednisolone: continue, usually for 5–7 days (3-5 days for children) **Follow up:** within 2–7 days

START TREATMENT

SABA 4–10 puffs by pMDI + spacer, repeat every 20 minutes for 1 hour

Prednisolone: adults 1 mg/kg, max. 50 mg, children 1–2 mg/kg, max. 40 mg

Controlled oxygen (if available): target saturation 93–95% (children: 94-98%)

WORSENING

TRANSFER TO ACUTE CARE FACILITY

While waiting: give inhaled SABA and ipratropium bromide, O₂, systemic corticosteroid

CONTINUE TREATMENT with SABA as needed **ASSESS RESPONSE AT 1 HOUR** (or earlier)

IMPROVING

ASSESS FOR DISCHARGE

Symptoms improved, not needing SABA PEF improving, and >60-80% of personal best or predicted Oxygen saturation >94% room air

Resources at home adequate

ARRANGE at DISCHARGE

Reliever: continue as needed **Controller:** start, or step up. Check inhaler technique, adherence

WORSENING

Prednisolone: continue, usually for 5–7 days (3-5 days for children) **Follow up:** within 2–7 days

FOLLOW UP

Reliever: reduce to as-needed

Controller: continue higher dose for short term (1–2 weeks) or long term (3 months), depending on background to exacerbation

Risk factors: check and correct modifiable risk factors that may have contributed to exacerbation, including inhaler technique and adherence

Action plan: Is it understood? Was it used appropriately? Does it need modification?

Rachel Denholm^{1*}⁽⁶⁾, Esther T. van der Werf^{1,2} and Alastair D. Hay¹

RESEARCH

Respiratory Research

Open Access

Use of antibiotics and asthma medication for acute lower respiratory tract infections in people with and without asthma: retrospective cohort study

There were 127,976 ALRTIs reported among 110,418 patients during the study period, of whom 17,952 (16%) had asthma.

<u>Respectively</u>, 81 and 79% of patients with and without asthma received antibiotics, and 41 and 15% asthma medication.

RESEARCH

Use of antibiotics and asthma medication for acute lower respiratory tract infections in people with and without asthma: retrospective cohort study

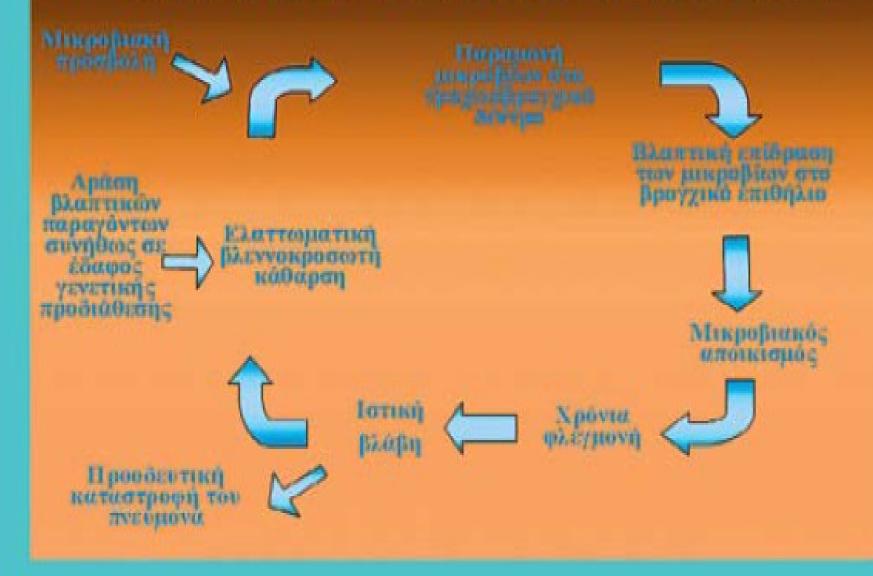
Rachel Denholm^{1*}^[1], Esther T. van der Werf^{1,2} and Alastair D. Hay¹

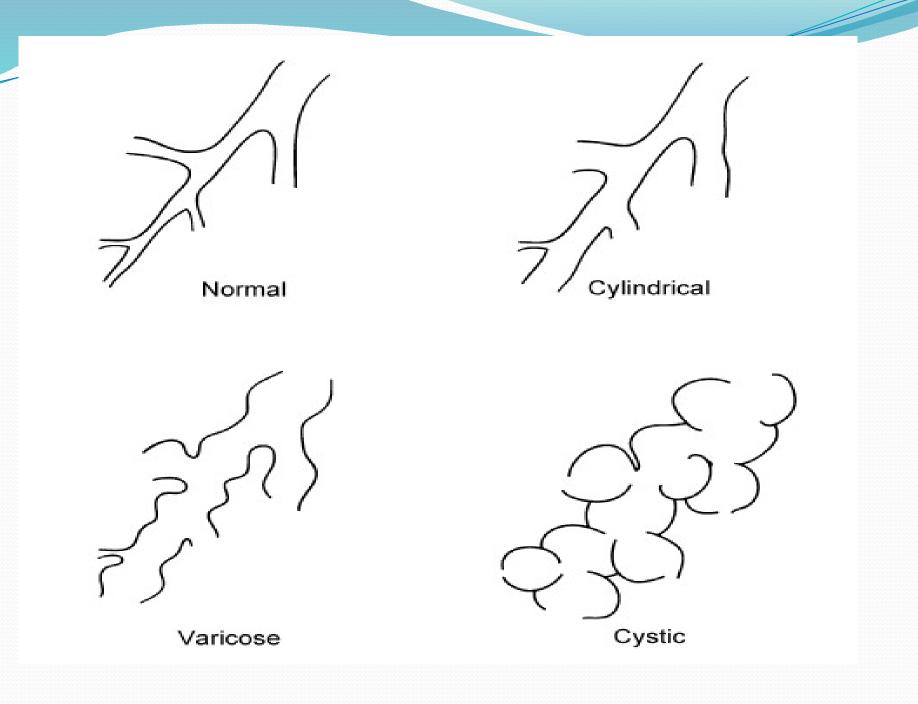
Conclusion

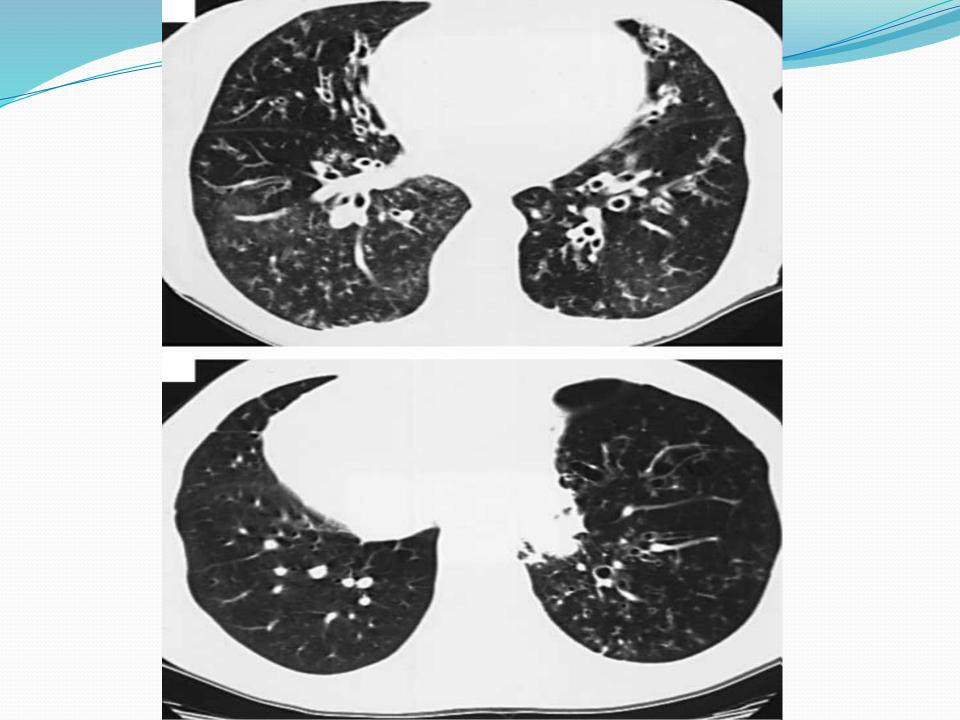
• We have demonstrated high-use of antibiotics and asthma medication for the treatment of ALRTI in patients without asthma,

 <u>Further research</u> is urgently needed to inform optimum use of both antibiotics and asthma medication for patients with ALRTI.

Open Access


ASTHMA MANAGEMENT DURING THE COVID-19 PANDEMIC


- <u>Advise patients with asthma to continue</u> taking their prescribed asthma medications, particularly inhaled corticosteroid (ICS) medications, and oral corticosteroids (OCS) if prescribed
- Where possible, **avoid using nebulizers** due to the risk of transmitting infection to healthcare workers and other patients
- Avoid spirometry in patients with confirmed/suspected COVID-19


Ορισμός Βρογχεκτασίες

- είναι χρόνια, φλεγμονώδης, ετερογενής, πάθηση που χαρακτηρίζεται από οριστική διάταση των βρόγχων και βρογχιολίων και πάχυνση των τοιχωμάτων τους, απότοκη δομικών αλλοιώσεων των τοιχωμάτων τους και του παρακείμενου πνευμονικού παρεγχύματος που τα συγκρατούν.
- Χαρακτηρίζονται από την υπερβολική παραγωγή παθολογικής συστάσεως τραχειοβρογχικών εκκρίσεων, που κινητοποιούν ένα φαύλο κύκλο βρογχικών λοιμώξεων και ουδετεροφιλικής φλεγμονής.

Ο "ΦΑΥΛΟΣ ΚΥΚΛΟΣ" ΤΗΣ ΦΛΕΓΜΟΝΗΣ ΣΤΙΣ ΒΡΟΓΧΕΚΤΑΣΙΕΣ

Η κλινική εικόνα διακρίνεται από ευρεία ετερογένεια, ακόμη και μεταξύ περιπτώσεων ίδιας αιτιολογίας:

- βήχας και βλεννοπυώδη απόχρεμψη που χρονολογείται από μακρού (μήνες/έτη)
- αιμόπτυση, λόγω δομικών αλλοιώσεων των τοιχωμάτων των αεραγωγών, στις περιόδους των οξέων λοιμώξεων,
- Δύσπνοια,
- Πλευροδυνία,
- συριγμός,
- πυρετός,
- αδυναμία, κόπωση, εξάντληση και απώλεια βάρους

 Σπανιότερα, περιγράφονται επεισόδια αιμοπτύσεως, με ή χωρίς απόχρεμψη (ξηρές βρογχεκτασίες)

Box 5 Assessment of patients with exacerbations of bronchiectasis

Adults

Outpatients

- History.
- Clinical examination.
- Sputum for culture (preferably prior to commencement of antibiotics).
- Review of previous sputum microbiology. Innatients

Inpatients

- History.
- Clinical examination.
- Oxygen saturation on air.
- Arterial blood gases if indicated.
- ECG if indicated.
- Chest x-ray.
- Sputum for culture (preferably prior to commencement of antibiotics).
- ► Blood culture if pyrexial ≥38°C.
- Full blood count, urea and electrolytes and liver function tests.
- Erythrocyte sedimentation rate or C-reactive protein (may be useful for diagnosing and monitoring exacerbations).
- Review of previous sputum microbiology.
- If feasible, 24 h sputum weight or volume.

Increased cough <u>+ wheeze +</u> <u>breathlessness +</u> <u>systemic upset</u>

Exacerbations requiring antibiotic therapy (if positive in all 3 arms)

Increased sputum volume or change in viscosity

Increased sputum purulence

Figure 2 Definition of an exacerbation needing antibiotic therapy.

Common organisms associated with acute exacerbation of bronchiectasis and suggested antimicrobial agents

¥		· · · · · · · · · · · · · · · · · · ·		
(A) Adults				
Organism	Les ou worlded of stating the the state	Ler oth of the threat	Fee invitende 1 see un (-livie viceatine it	Levig 6 ; é t. satment
Streptococcus pneumoniae	Amoxicillin 500 mg tds	14 days	Clarithromycin 500 mg bd	14 days
<i>Haemophilus influenzae</i> (β-lactamase negative)	Amoxicillin 500 mg tds Amoxicillin 1 g tds Amoxicillin 3 g bd	14 days 14 days 14 days	Clarithromycin 500 mg bd or ciprofloxacin 500 mg bd or ceftriaxone 2 g od (IV)	14 days
<i>Haemophilus influenzae</i> (β-lactamase positive)	Co-amoxiclav 625 mg tds	14 days	Clarithromycin 500 mg bd or ciprofloxacin 500 mg bd or ceftriaxone 2 g od (IV)	14 days
Moraxella catarrhalis	Co-amoxiclav 625 mg tds	14 days	Ciprofloxacin 500 mg bd	14 days
Staphylococcus aureus (MSSA)	Flucloxacillin 500 mg qds	14 days	Clarithromycin 500 mg bd	14 days
Staphylococcus aureus (MRSA): oral preparations	<50 kg: Rifampicin 450 mg od + trimethoprim 200 mg bd	14 days	<50 kg: Rifampicin 450 mg od + doxycycline 200 mg od	14 days
	>50 kg:Rifampicin 600 mg + trimethoprim 200 mg bd		>50 kg: Rifampicin 600 mg + doxycycline 200 mg od	14 days
			Third-line: Linezolid 600 mg bd	14 days
Staphylococcus aureus (MRSA): intravenous preparations	Vancomycin 1 g bd* (monitor serum levels and adjust dose accordingly) or teicoplanin 400 mg od	14 days	Linezolid 600 mg bd	14 days
Coliforms (eg, Klebsiella, enterobacter)	Oral ciprofloxacin 500 mg bd	14 days	Intravenous ceftriaxone 2 g od	14 days
Pseudomonas aeruginosa	Oral ciprofloxacin 500 mg bd (750 mg bd in more severe infections)	14 days	Monotherapy: Intravenous ceftazidime 2 g tds or tazocin 4.5 g tds or aztreonam 2 g tds or meropenem 2 g tds	14 days
			Combination therapy: The above can be combined with gentamic in or tobramycin or colistin 2 MU tds (<60 kg, 50 000- 75 000 units/kg daily in 3 divided doses)	14 days

Σι-μα Ιητηρ(ιατρός) Μινωϊκή Κρήτη

Ευχαριστώ για την προσοχή σας

1ο ΠΟΛΥΘΕΜΑΤΙΚΟ ΣΥΝΕΔΡΙΟ ΙΑΤΡΙΚΟΥ ΣΥΛΛΟΓΟΥ ΗΡΑΚΛΕΙΟΥ

Ξενοδοχείο Aquila Atlantis 03,04 & 05.11.2023